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Recall our expression parser… 

expr = do a <- term 

          exactly '+' 

     b <- term 

     return (a+b) 

       `mplus` 

       term 

 

term = do a <- factor 

          exactly '*' 

     b <- factor 

     return (a*b) 

       `mplus` 

       factor 

factor = number  

        `mplus` 

         do exactly '(' 

       a <- expr 

       exactly ')‘ 

  return a 

 

exactly t =  

  satisfy (==t) 

Wouldn’t it be nice to 
use liftM3 here? 

liftM3 (\a _ b -> a*b) ? 

liftM3x_x (*) ? 



An Applicative Interface 

• Let’s build liftM3 from simpler parts! 

 

 

• Then… 
 

liftM  f x     = return f <*> x 

liftM2 f x y   = return f <*> x <*> y 

liftM3 f x y z = return f <*> x <*> y <*> z 

… 

(<*>) :: Monad m => m (a -> b) -> m a -> m b 

f <*> x = liftM2 ($) f x 



Ignoring Values 

• Variations on (<*>) that ignore one 
argument 

 

 

 

 

• All the effects happen left to right, but some 
values are discarded 

(<*) :: Monad m => m a -> m b -> m a 

a <* b = return const <*> a <*> b 

(*>) :: Monad m => m a -> m b -> m b 

a *> b = return (const id) <*> a <*> b 



Revisiting our expression parser… 

expr =  

  return (+) <*> term <* exactly '+‘ <*> term 

  `mplus` term 

 

term =  

  return (*) <*> factor <* exactly '*‘ <*> factor 

 `mplus` factor 

 

factor =  

  number 

  `mplus` exactly '(‘ *> expr <* exactly ')‘ 

 

exactly t = satisfy (==t) 

More concise More ”applicative” in feel 



Another Problem 

• Backtracking is inefficient! 

instance MonadPlus m =>  

           MonadPlus (StateT s m) where 

  m `mplus` m' =  

    StateT (\s ->  

      runStateT m s `mplus` runStateT m' s) 

Even if the first parser m succeeds… 
…we must keep the entire input and the 
other parser in memory, in case we should 
ever need to backtrack 



A Solution? 

• Compute static information about each parser, 
and use to optimise 

– Possible starter symbols 

– Can it match the empty string? 

• In m `mplus` m’, if m’ 

1. Cannot match the empty string 

2. Cannot match the next symbol 

– Then it can safely be discarded 



Attaching Static Information 

• Let parsers be a pair, of 
– Static information 

– A dynamic parsing function (as before) 

 

• But what about (>>=)? 
– m >>= f matches ””   

                        m matches ”” and f ? matches ”” 

– starters(m >>= f) = starters m ++ starters (f ?) 

                        if m matches ”” 

We can’t know ? until 
we see the (dynamic) 

input! 



Hmm… 

• (>>=) is an obstacle to computing static into 

 

• But (<*>) makes (>>=) less necessary… can we 
do without (>>=) sometimes? 

 

 

 

• Computing static info for f <*> m is 
unproblematic  

 

expr =  

  return (+) <*> term <* exactly '+‘ <*> term 

  `mplus` term 



Applicative Functors 

• An alternative interface… 

 

 

• Every Monad is Applicative 

 

class Functor f => Applicative f where 

  pure  :: a -> f a 

  (<*>) :: f (a->b) -> f a -> f b 

newtype WrappedMonad m a = Wrap {unWrap :: m a} 

 

instance Monad m => Applicative (WrappedMonad m) 

where 

  pure a            = Wrap (return a) 

  Wrap f <*> Wrap x = Wrap (liftM2 ($) f x) 



Not every Applicative is a Monad! 

• Can a parser match the empty string? 

 

 

 

 
– A ”parser” that can’t parse—just tell us if it matches 

””! 

• A generally useful kind of non-monadic 
Applicative: collect information using a monoid 

newtype Empty a = Empty Bool 

 

instance Applicative Empty where 

  pure _              = Empty True 

  Empty f <*> Empty x = Empty (f && x) 



But every Applicative is a Functor 

• We can always define fmap like this… 

 

 

• (We can’t write a general instance, because 
the type-checker would use it too often, but 
for any specific f the definition works) 

fmap :: (a->b) -> f a -> f b 

fmap f a = pure f <*> a 

instance Applicative f => Functor f 

where 

  fmap f a = pure f <*> a 



Applicative vs Monad 

• Consider a conditional function 

 

• Monadic: 

 

 

• Applicative: 

cond :: m Bool -> m a -> m a -> m a 

cond m f g = do bool <- m 

    if bool then f else g 

Effects depend on 
value of m 

cond m f g = 

  pure (\b t e->if b then t else e) 

    <*> m <*> f <*> g 

All effects happen 
anyway 

OK for parsing CFGs! 



Applicatives are more composable! 

• We can pair any two Applicatives: 

data Prod f g a = Prod (f a) (g a) 

 

instance (Applicative f, Applicative g) =>  

                       Applicative (Prod f g) where 

  pure x = Prod (pure x) (pure x) 

  Prod f g <*> ~(Prod x y) =  

    Prod (f <*> x) (g <*> y) 



Applicatives are more composable! 

• We can compose Applicatives: 

 

 

 

 

• Even monads which don’t compose can be 
wrapped and composed as Applicatives! 

newtype Compose f g a = Comp (f (g a)) 

 

instance (Applicative f, Applicative g) =>  

                    Applicative (Compose f g) where 

  pure x = Comp (pure (pure x)) 

  Comp f <*> Comp x = Comp (pure (<*>) <*> f <*> x) 



Making Choices 

• We need an analogue of MonadPlus 

 

 

• Of course, wrapping a MonadPlus gives an 
Alternative 

class Applicative f => Alternative f where 

  empty :: f a 

  (<|>) :: f a -> f a -> f a 

instance MonadPlus m =>  

           Alternative (WrappedMonad m) where 

  empty = Wrap mzero 

  Wrap a <|> Wrap b = Wrap (a `mplus` b) 



Making Empty an Alternative 

• Can we define an Alternative instance for 
Empty? 

– When does a choice between parsers match ””? 

instance Alternative Empty where 

  empty = Empty False 

  Empty f <|> Empty g = Empty (f || g) 

Matches no strings, so definitely 
not the empty string 

Compare <*>, which used && 



Some and Many revisited  

• Now we can define some and many for any 
Alternative functor! 

 

 

• Even generic optional values! 

some f = pure (:) <*> f <*> many f 

many f = some f <|> pure [] 

optional f = pure Just <*> f 

     <|> pure Nothing 

some f =      (:) <$> f <*> many f 

many f = some f <|> pure [] 

optional f =      Just <$> f 

     <|> pure Nothing 

some f = s where 

  s = (:) <$> f <*> (s <|> pure[]) 



Where are we now? 

• Wrapping our Parser monad gives us an 
Alternative functor 

– With pure, <*>, empty, <|>, <*, *>, some, many… 

– Almost everything we need to write parsers! 

 

 

 

• We just need to add exactly 

newtype Monadic a =  

    Monadic (WrappedMonad (StateT String Maybe) a) 

  deriving (Functor, Applicative, Alternative) 



The Parser Class 

• Because we want multiple representations of 
parsers, define a class 

 

• Monadic implementation: 

 

class Alternative p => Parser p where 

  exactly :: Char -> p Char 

instance Parser Monadic where 

  exactly t = Monadic (WrapMonad (do 

    ts <- get 

    case ts of 

      [] -> mzero 

      t':ts' -> do 

        guard (t==t') 

   put ts' 

   return t)) 



Our Example, Applicatively 

number, expr, term, factor :: 

  Parser p => p Integer 

 

number = read <$> some (anyof ['0'..'9']) 

 

expr = (+) <$> term <* exactly '+' <*> term 

   <|> term 

 

term = (*) <$> factor <* exactly '*' <*> factor 

   <|> factor 

 

factor = number 

     <|> exactly '(' *> expr <* exactly ')' 

*Parser> runMonadic expr "1+2*3" 

Just (7,"") 



Empty Parser 

• Can exactly t match the empty string? 

 

 

Examples 

 

 

 

We can execute and analyse the same code 

instance Parser Empty where 

  exactly _ = Empty False 

*Parser> runEmpty expr 

False 

*Parser> runEmpty (many expr) 

True 



What tokens can a parse start with? 

 
newtype Starts a = Starts [Char] 

 

instance Functor Starts where 

  fmap f x = pure f <*> x 

 

instance Applicative Starts where 

  pure x = Starts [] 

  Starts ts <*> Starts ts’ = ??? 

 

instance Alternative Starts where 

  empty = Starts [] 

  Starts ts <|> Starts ts' = Starts (nub (ts++ts')) 

 

instance Parser Starts where 

  exactly t = Starts [t] 

May start with one 
of ts’ if the first 

parser matches ”” 

newtype Starts a = Starts [Char] 

 

instance Functor Starts where 

  fmap f x = pure f <*> x 

 

instance Applicative Starts where 

  pure x = Starts [] 

   

 

instance Alternative Starts where 

  empty = Starts [] 

  Starts ts <|> Starts ts' = Starts (nub (ts++ts')) 

 

instance Parser Starts where 

  exactly t = Starts [t] 



Of course this doesn’t work… 

 

 

 

 

 

• As soon as we use something needing <*>, 
we crash 

*Parser> runStarts (exactly 'x' <|> exactly 'y') 

"xy” 

 

*Parser> runStarts (some (exactly 'x')) 

"*** Exception: No instance nor default method for 

class operation Control.Applicative.<*> 



Let’s compute Empty and Starts 
together 

• Just form their product 

 

• We’ll need to make Prod a Parser 

 

 

• Of course, it still doesn’t work! 

newtype Static a = Static (Prod Starts Empty a) 

  deriving (Functor,Applicative,Alternative,Parser) 

instance (Parser f, Parser g) => Parser (Prod f g) 

where 

  exactly t = Prod (exactly t) (exactly t) 

*Parser> runStatic (exactly 'x' <|> exactly 'y') 

("xy",False) 

*Parser> runStatic (some (exactly 'x')) 

("*** Exception: No instance nor default method for 

class operation Control.Applicative.<*> 



Replace <*> just for Static! 

• Derive everything except Applicative 

newtype Static a = Static (Prod Starts Empty a) 

  deriving (Functor,Alternative,Parser) 

instance Applicative Static where 

  pure x = Static (pure x) 

 

  Static (Prod (Starts ts) (Empty e)) <*>  

    ~(Static (Prod (Starts ts') (Empty e'))) 

    = Static (Prod (Starts (ts++if e then ts' else [])) 

                   (Empty e<*>Empty e')) 



Now it works! 

• Examples: 

 

*Parser> runStatic (some (exactly ' ') *> exactly 'x') 

(" ",False) 

 

*Parser> runStatic (many (exactly ' ') *> exactly 'x') 

(" x",False) 

 

*Parser> runStatic expr 

("0123456789(",False) 

 



(Truth in Advertising) 

 

• It should work, but it doesn’t 

 

• I have to explicitly declare the Alternative 
instance too, and work around a bug in ghc’s 
strictness analyser (?) 



Optimizing <|> 

• Choice is inefficient in backtracking parsers 

• Let’s pair the Static and Monadic parsers 

 

 

• Define an Alternative instance that optimizes 
<|> based on the starter tokens and the next 
character 

• Could not be done with monads 

 

 

 

newtype OptParser a = Opt (Prod Static Monadic a) 

  deriving (Functor, Applicative, Parser) 



What else can we do? 

• Let’s try Applicative randomness! 

 

 

• We need a class for choose 

 

 

newtype Random a = Random (WrappedMonad RandomM a) 

  deriving (Functor, Applicative, Choice) 

class Applicative f => Choice f where 

  choose :: Int -> Int -> f Int 

instance Choice (WrappedMonad RandomM) where 

  choose m n | m <= n =  

    WrapMonad (do x <- generate 

            return (m + (x `mod` (n-m+1)))) 



Random Alternatives 

• We make the choice in the monad to avoid 
generating both alternatives always 

 

 

 

 

BUT 

• No sensible definition of empty 

instance Alternative Random where 

  Random (WrapMonad m) <|> Random (WrapMonad m') = 

    Random (WrapMonad (do  

      x <- generate 

     if even x then m else m')) 



Bounded lists 

• Bounded lists are easy to define with <|>: 

 

 

 

 

 

• But do we really want 33 so often? 

blist 0 g         = pure [] 

blist n g | n > 0 =  

    shorter <|>  

    (:) <$> g <*> shorter 

  where shorter = blist (n-1) g 

*Random> runRandom (blist 30 (choose 1 10 <|> pure 33)) 

[33,5,33,5,33,33,9,4,33,7,3,33,1,10] 



Cardinality 

• How many possibilities are we choosing from? 

newtype Card a = Card {runCard :: Integer} 

instance Applicative Card where 

  pure _ = Card 1 

  Card m <*> Card n = Card (m*n) 

 

instance Alternative Card where 

  empty = Card 0 

  Card m <|> Card n = Card (m+n) 

 

instance Choice Card where 

  choose m n = Card (fromIntegral $ n-m+1) 



Use Cardinality to Guide Choice 

• Compose Card and Random into a product 

 

 

 

 

 

• Define Alternative Uniform to use cardinalities 
as weights! 

 

newtype Uniform a =  

    Uniform (Prod Card (WrappedMonad RandomM) a) 

  deriving (Functor, Applicative, Choice) 

instance (Choice f, Choice g) =>  

             Choice (Prod f g) where 

  choose m n = Prod (choose m n) (choose m n) 

empty = Uniform (Prod empty undefined) 



That’s Better! 

• Here’s the old test 

 

 

– Lots of 33s! 

• Here’s the new one 

*Random> runRandom (blist 30 (choose 1 10 <|> pure 33)) 

[33,5,33,5,33,33,9,4,33,7,3,33,1,10] 

 

 

 

 

 

*Random> runUniform (blist 30 (choose 1 10 <|> pure 33)) 

[5,33,2,6,7,3,3,7,10,7,1,10,4,10,9,4,3,6,4,6,10,3,33,5,3,

33,9,1,4] 



What else can we do? 

• ZipLists! 

– [f,g,h] <*> [x,y,z]  [f x,g y,h z] 

• Think of a sequence of steps 

 

• Lists are already Applicative (all combinations), 
so we need a new type 



Applicative ZipLists 

 

 

 

 

• It makes sense that pure repeats x infinitely… 
it’s available at every step 

instance Applicative ZipList where 

  pure x = ZipList (repeat x) 

  ZipList fs <*> ZipList xs =  

    ZipList (zipWith ($) fs xs) 



A ZipList Monad? 

• Consider [a1,a2…an] >>= f 

 

 

 

 

 

• The 3rd monad law fails 

– (if f returns lists of different lengths) 

– Would also be very inefficient 

a1 

a2 
… 

an 

[b11,b12 … b1m] 

[b21,b22 … b2m] 
… 

[bn1,bn2 … bnm] 

f 



Functional Reactive Programming 

• Describes changing behaviours over time 

– Behaviour a         Time -> a 

 

• Naturally applicative! 

– Behaviour (a->b) -> Behaviour a -> Behaviour b 

 

• Inefficient as a monad! 

– Behaviour a -> (a -> Behaviour b) -> Behaviour b 

Construct a Behaviour b from a n at each 
Time, then sample it at one point! 

Terrible for GC! 



Html (nano-)Formlets 

• Example: 

 

• Generated by:  

 

 

• Data returns to the application as 
    

Name:   <input type="text" name="name"> <br> 

Age:    <input type="text" name="age">  <br> 

Gender: <input type="text" name="gender"> 

[(”name”,”John Hughes”), 

 (”age”,”54”), 

 (”gender”,”male”)] 

Names must 
be unique 

Names 
must 

match 

Names 
must 

match 



Using Formlets 

 data Person = Person String Integer Gender 
  deriving Show 

data Gender = Male | Female 

  deriving (Read, Show) 

person =  

  Person 

    <$  html "Name: " 

    <*> input 

    <*  html "<br>\nAge: " 

    <*> (read <$> input) 

    <*  html "<br>\nGender: " 

    <*> (read <$> input) 

Generate HTML 

Accept and 
process input 



The features we need 

• Generation of unique names 

• Collection of generated HTML 

• Evaluation of results given field values 

in this order! 

 

 

newtype Formlet a =  

    Formlet (Compose NameGen (Compose Html Eval) a) 

  deriving (Functor, Applicative) 

NameGen (Html (Eval a)) 

Staged effects 



Name Generation 

• We use a state monad to carry a counter 

 

 

 

• Generate a name by incrementing it 

 

newtype NameGen a =  

    NameGen (WrappedMonad (State Integer) a) 

  deriving (Functor, Applicative) 

nextName :: NameGen String 

nextName = NameGen (WrapMonad (do  

  n <- get 

  put (n+1) 

  return ("input_"++show n))) 



Collecting Html 

• Collect a string of HTML as the effect 

 

 

• Basic operation generates some text 

 

 

• Generating a named input field 

newtype Html a = Html (String,a) 

  deriving (Functor, Applicative) 

text :: String -> Html () 

text s = Html (s,()) 

inputField name =  

  text $ "<input type=\"text\"name=\""++name++"\">" 



Evaluation of fields 

• Pass in list of fields implicitly 

 

 

• An operation to look up the value of a named 
field 

newtype Eval a = Eval ([(String,String)] -> a) 

  deriving (Functor, Applicative) 

field :: String -> Eval String 

field name = Eval (fromJust . lookup name) 



Formlets: Generating HTML 

 

html :: String -> Formlet () 

html s = Formlet (Comp (pure (Comp (pure <$> text s)))) 

newtype Formlet a =  

    Formlet (Compose NameGen (Compose Html Eval) a) 

  deriving (Functor, Applicative) 

Html () 

Html (Eval ()) 

Compose Html Eval () 

NameGen (Compose Html Eval ()) 

Compose NameGen (Compose Html Eval) () 



Formlets: Input Fields 

• Combine effects in all three Applicatives! 

 

 

 

 

 

 

• Key: NameGen Html Eval 

input :: Formlet String 

input = Formlet (Comp ( 

  (\name -> Comp ((pure (field name)) 

                    <* 

          inputField name) 

            ) 

  <$> nextName 

  )) 



Running it… 

• Run the person Formlet… 

 

• Print the HTML 

 

 

 

• Evaluate on corresponding inputs 

*Formlet> let (output,fun) = runFormlet person 

 

 

 

*Formlet> putStrLn output 

Name: <input type="text" name="input_1"><br> 

Age: <input type="text" name="input_2"><br> 

Gender: <input type="text" name="input_3"> 

 

 

 

*Formlet> runEval fun [("input_1","John Hughes"), 

("input_2","54"), ("input_3","Male")] 

Person "John Hughes" 54 Male 



Conclusions 

• Applicative functors are… 

– Less powerful than monads—less expressive 

– More general than monads—more instances 

• More composable than monads 

– Prod and Compose 

– No need for ”Applicative transformers” 

• Enjoy a simple interface—a ”sweet spot” in 
common interfaces 

• Have lots of applications 


