Monads and all that...
Il — Applicative Functors

John Hughes
Chalmers University/Quviq AB

Recall our expression parser...

expr = do a <- term factor = number
exactly '+' ‘mplus’
b <- term do exactly ' ('
return (a+b) a <- expr
‘mplus’ exactly ')
term return a
term = do a <- factor exactly t =
exactly '¥*' satisfy (==t)
b <- factor
return (a*b) _ Wouldn’t it be nice to
‘mplus’

use 1iftM3 here?

factor
liftM3 (\a _ b -> a*b) ?
1iftM3x x (*) °?

An Applicative Interface

Let’s build 11 £tM3 from simpler parts!

(<*>) :: Monad m =>m (a ->b) -=>ma->mb
f <*> x = 1liftM2 ($) £ x

* Then...

return £ <*> x
return £ <*> x <*> y
return £ <*> x <*> y <*> z

D

/.e,f t assocrabive,
(1 ke a{)f [f C&A'ov\'

1iftM £ x
1iftM2 f x y
1iftM3 £ x y =z

lgnoring Values

* Variations on (<*>) thatignore one
argument

(<*) :: Monad m=> ma ->mb ->m a
a <* b = return const <*> a <*> Db

(*>) :: Monad m=> ma ->mb ->mb
a *> b = return (const id) <*> a <*> b

* All the effects happen left to right, but some
values are discarded

Revisiting our expression parser...

expr =
return

‘mplus

term =
return
‘mplus’

factor =
number

‘mplus’

(+) <*> term <* exactly '+' <*> term
term

(*) <*> factor <* exactly '*' <*> factor
factor

exactly ' (' *> expr <* exactly ')

exactly t = satisfy (==t)

More concise

More "applicative” in feel

Another Problem

e Backtracking is inefficient!

instance MonadPlus m =>

MonadPlus (StateT s m) where

m mplus m' =
(\s ->
m s mplus

\

Even if the first parser m succeeds...

...we must keep the entire input and the
other parser in memory, in case we should
ever need to backtrack

A Solution?

 Compute static information about each parser,
and use to optimise

— Possible starter symbols

— Can it match the empty string?
*Inm "mplus m’,ifm’

1. Cannot match the empty string

2. Cannot match the next symbol
— Then it can safely be discarded

Attaching Static Information

e Let parsers be a pair, of
— Static information
— A dynamic parsing function (as before)

We can’t know ? until

 But what about (>>=)7? we see the (dynamic)
input!
—m >>= £ matches”” & b
m matches ”” and £ ? matches
— starters(m >>= f£) = starters m ++ starters (£ ?)
if m matches ””

77

Hmm...

e (>>=)is an obstacle to computing static into

* But (<*>) makes (>>=) less necessary... can we
do without (>>=) sometimes?

expr =
return (+) <*> term <* exactly '+' <*> term
‘mplus’ term

 Computing static info for £ <*> mis
unproblematic ©

Applicative Functors

e An alternative interface...

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: £ (a->b) -> £ a -> £ b

* Every Monad is Applicative

newtype WrappedMonad m a = Wrap {unWrap :: m a}

instance Monad m => Applicative (WrappedMonad m)
where

pure a
Wrap £ <*> Wrap x

Wrap (return a)
Wrap (liftM2 ($) £ x)

Not every Applicative is a Monad!

e Can a parser match the empty string?

newtype Empty a Empty Bool

instance Applicative Empty where
pure Empty True
Empty f <*> Empty x Empty (f && x)

— A ”parser” that can’t parse—just tell us if it matches

”»n |

* A generally useful kind of non-monadic
Applicative: collect information using a monoid

But every Applicative is a Functor

* We can always define £map like this...

fmap :: (a->b) -> £f a -> £ b
fmap £ a = pure £ <*> a

* (We can’t write a general instance, because
the type-checker would use it too often, but
for any specific £ the definition works)

instance Applicative f => Functor f

where
fmap £ a = pure £ <*> a

Applicative vs Monad

e Consider a conditional function

cond :: m Bool -> m a ->

Effects depend on

° Monadic: value of m

do bool <- m
if bool then f else g

condm £ g

o All effects happen
* Applicative: anyway

OK for parsing CFGs!

cond m £ g =
pure (\b t e->if b then
<*> m <*> f <*> g

Applicatives are more composable!

* We can pair any two Applicatives:

data Prod £ g a = Prod (f a) (g a)

instance (Applicative £, Applicative g) =>
Applicative (Prod f g) where
pure x = Prod (pure x) (pure x)
Prod £ g <*> ~(Prod x y) =
Prod (f <*> x) (g <*> y)

Applicatives are more composable!

 We can compose Applicatives:

newtype Compose £f g a = Comp (f (g a))

instance (Applicative f, Applicative g) =>
Applicative (Compose f g) where

pure x = Comp (pure (pure x))
Comp £ <*> Comp x = Comp (pure (<*>) <*> f <*> x)

* Even monads which don’t compose can be
wrapped and composed as Applicatives!

Making Choices

 We need an analogue of MonadPlus

class Applicative f => Alternative f where
empty :: £ a
(<|>) :: £a->fa->f a

* Of course, wrapping a MonadPlus gives an
Alternative

instance MonadPlus m =>
Alternative (WrappedMonad m) where
empty = Wrap mzero
Wrap a <|> Wrap b = Wrap (a mplus b)

Making Empty an Alternative

e Can we define an Alternative instance for

Empty? Matches no strings, so definitely
not the empty string

— When does a choice'%

instance Alternati)e Empty where
empty = Empty False
Empty £ <|> Empty g = Empty (f || g)

Compare <*>, which used &&

Some and Many revisited ©

* Now we can define some and many for any
Alternative functor!

some f = s where
s = (:) <S> £ <*> (s <|> purel])

* Even generic optional values!

optional f = Just <$> £
<|> pure Nothing

CEED
(aZWRJB

Where are we now?

 Wrapping our Parser monad gives us an
Alternative functor

— With pure, <*>, empty, <[>, <*, *>, some, many...
— Almost everything we need to write parsers!

newtype Monadic a =
Monadic (WrappedMonad (StateT String Maybe) a)
deriving (Functor, Applicative, Alternative)

* We just need to add exactly

The Parser Class

* Because we want multiple representations of
parsers, define a class

class Alternative p => Parser p where
exactly :: Char -> p Char

 Monadic implementation:

instance Parser Monadic where
exactly t = Monadic (WrapMonad (do
ts <- get
case ts of
[] -> mzero
t':ts' -> do
guard (t==t')
put ts'
return t))

Our Example, Applicatively

olL wned us
number, expr, term, factor :} —@/\(“C“a IS
/
Parser p => p Integer

number = read <$> some '0' .."'9']1)

expr = (+) <$> term <* exactly '+' <*> term
<|> term
term = (*) <$> factor <* exactly '*' <*> factor

<|> factor

factor = number
<|> exactly '(' *> expr <* exactly ')'

*Parser> runMonadic expr "1+2*3"
Just (7,"")

Empty Parser

* Can exactly t matchthe empty string?

instance Parser Empty where
exactly = Empty False

Examples

*Parser> runEmpty expr

False
*Parser> runEmpty (many expr)
True

We can execute and analyse the same code

What tokens can a parse start with?

newtype Starts a Starts [Char]

instance Functor Starts where
fmap £ x = pure f <*> x

instance Applicative Starts where
pure x = Starts []

instance Alternative Starts where
empty = Starts []
Starts ts <|> Starts ts' = Starts (nub (ts++ts'))

instance Parser Starts where
exactly t = Starts [t]

Of course this doesn’t work...

*Parser> runStarts (exactly 'x' <|> exactly 'y')
1} xy 144

*Parser> runStarts (some (exactly 'x'))

"*** Exception: No instance nor default method for
class operation Control.Applicative.<*>

* As soon as we use something needing <*>,
we crash

Let’s compute Empty and Starts
together

Just form their product

newtype Static a = Static (Prod Starts Empty a)
deriving (Functor,Applicative,Alternative,Parser)

We'll need to make Prod a Parser

instance (Parser f, Parser g) => Parser (Prod f q)
where
exactly t = Prod (exactly t) (exactly t)

 Of course, it still doesn’t work!

*Parser> runStatic (exactly 'x' <|> exactly 'y')
("xy" ,False)

*Parser> runStatic (some (exactly 'x'))

("*** Exception: No instance nor default method for
class operation Control.Applicative.<*>

Replace <*> just for Static!

* Derive everything except Applicative

newtype Static a = Static (Prod Starts Empty a)
deriving (Functor,Alternative,Parser)

instance Applicative Static where
pure x = Static (pure x)

Static (Prod (Starts ts) (Empty e)) <*>
~(Static (Prod (Starts ts') (Empty e')))
= Static (Prod (Starts (ts++if e then ts' else []))
(Empty e<*>Empty e'))

Now it works!

 Examples:

*Parser> runStatic (some (exactly ' ') *> exactly 'x')
(" ",False)
*Parser> runStatic (many (exactly ' ') *> exactly 'x')

(" x",False)

*Parser> runStatic expr
("0123456789 (" ,False)

(Truth in Advertising)

e |t should work, but it doesn’t

* | have to explicitly declare the Alternative
instance too, and work around a bug in ghc’s
strictness analyser (?)

Optimizing <|>

Choice is inefficient in backtracking parsers
Let’s pair the Static and Monadic parsers

newtype OptParser a = Opt (Prod Static Monadic a)
deriving (Functor, Applicative, Parser)

Define an Alternative instance that optimizes
<|> based on the starter tokens and the next
character

Could not be done with monads

What else can we do?

Let’s try Applicative randomness!

newtype Random a = Random (WrappedMonad RandomM a)
deriving (Functor, Applicative, Choice)

e \WWe need a class for choose

class Applicative f£ => Choice f where
choose :: Int -> Int -> f Int

instance Choice (WrappedMonad RandomM) where
choose m n | m <= n =
WrapMonad (do x <- generate
return (m + (x mod (n-m+l))))

Random Alternatives

 We make the choice in the monad to avoid
generating both alternatives always

instance Alternative Random where
Random (WrapMonad m) <|> Random (WrapMonad m') =
Random (WrapMonad (do
X <- generate
i1f even x then m else m'))

BUT
* No sensible definition of empty

Bounded lists

* Bounded lists are easy to define with <|>:

blist 0 g
blist ng | n >0
shorter <|>
(:) <$> g <*> shorter
where shorter = blist (n-1) g

pure []

*Random> runRandom (blist 30 (choose 1 10 <|> pure 33))
[33,5,33,5,33,33,9,4,33,7,3,33,1,10]

 But do we really want 33 so often?

Cardinality

How many possibilities are we choosing from?

newtype Card a = Card {runCard :: Integer}

instance Applicative Card where
pure = Card 1
Card m <*> Card n = Card (m*n)

instance Alternative Card where
empty = Card O
Card m <|> Card n = Card (m+n)

instance Choice Card where
choose m n = Card (fromIntegral $ n-m+l)

Use Cardinality to Guide Choice

* Compose Card and Random into a product

newtype Uniform a =
Uniform (Prod Card (WrappedMonad RandomM) a)
deriving (Functor, Applicative, Choice)

instance (Choice £, Choice g) =>
Choice (Prod f g) where
choose m n = Prod (choose m n) (choose m n)

e Define Alternative Uniform to use cardinalities
as weights!

empty = Uniform (Prod empty undefined)

That’s Better!

e Here’s the old test

*Random> runRandom (blist 30 (choose 1 10 <|> pure 33))
[33,5,33,5,33,33,9,4,33,7,3,33,1,10]

— Lots of 33s!
 Here’s the new one
*Random> runUniform (blist 30 (choose 1 10 <|> pure 33))

[5,33,2,6,7,3,3,7,10,7,1,10,4,10,9,4,3,6,4,6,10,3,33,5,3,
33,9,1,4]

What else can we do?

e ZipLists!
— [£,9,h] <*> [x,y,z] "® [f x,g9 y,h z]

* Think of a sequence of steps

* Lists are already Applicative (all combinations),
so we need a new type

Applicative ZipLists

instance Applicative Ziplist where
pure x = ZiplList (repeat x)
ZipList fs <*> ZipList xs =
ZipList (zipWith ($) fs xs)

* |t makes sense that pure repeats x infinitely...
it’s available at every step

A ZipList Monad?

* Consider [a;,a,..a,] >>= £

a, . bigl
a, f b,.]
a, [b,,, b,

 The 3rd monad law fails
— (if f returns lists of different lengths)
— Would also be very inefficient

Functional Reactive Programming

* Describes changing behaviours over time

— Behaviour a Time -> 3

* Naturally applicative!
— Behaviour (a->b) -> Behaviour a -> Behaviour b

Terrible for GC!
e |Inefficient as a monad!

— Behaviour a -> (a -> Behaviour b) -> Behaviour b

Construct a Behaviour b from a n at each

Time, then sample it at one point!

Html (nano-)Formlets

° Example: Name: | John Hughes Names must

Age: |54 be unique
Gender: male

* Generated by:

Name: <input type='"text" name
Age: <input type='"text" name
Gender: <input type='"text" name

* Data returns to the application as

[("name” ,”John Hughes”),
144 115411) ,

Using Formlets

data Person = Person String Integer Gender
deriving Show

data Gender = Male | Female
deriving (Read, Show)

Pe;“n = Generate HTML
erson

<$ html "Name: "
<*> input

<* html "
\nAge:
<*> (read <$> input)
<* html "
\nGender:
<*> (read <$> input)

Accept and
process input

The features we need

* Generation of unique names

* Collection of generated HTML

* Evaluation of results given field values
in this order!

newtype Formlet a =
Formlet (Compose NameGen (Compose Html Eval) a)
deriving (Functor, Applicative)

NameGen (Html (Eval a))

N

Staged effects

Name Generation

* We use a state monad to carry a counter

newtype NameGen a =

NameGen (WrappedMonad (State Integer) a)
deriving (Functor, Applicative)

* Generate a name by incrementing it

nextName :: NameGen String
nextName = NameGen (WrapMonad (do
n <- get
put (n+1)

return ("input "++show n)))

Collecting Html

* Collect a string of HTML as the effect

newtype Html a = Html (String,a)
deriving (Functor, Applicative)

* Basic operation generates some text

text :: String -> Html ()
text s = Html (s, ())

* Generating a named input field

inputField name =
text $§ "<input type=\"text\"name=\""++name++"\">"

owS

()BA““
e

W

Evaluation of fields

* Pass in list of fields implicitly

newtype Eval a = Eval ([(String,String)] -> a)
deriving (Functor, Applicative)

* An operation to look up the value of a named
field

field :: String -> Eval String
field name = Eval (fromJdJust . lookup name)

Formlets: Generating HTML

newtype Formlet a =
Formlet (Compose NameGen (Compose Html Eval) a)
deriving (Functor, Applicative)

html :: String -> Formlet ()

html s = Formlet (Comp (pure (Comp (pure <$> text s))))
\ J

Html 0

(
Html (Eval ()) |

\

Compose Hﬂhl Eval ()
\ J
NameGen (Compoé% Html Eval ())

\ }
Compose NameGen (Cd&pose Html Eval) ()

Formlets: Input Fields

Combine effects in all three Applicatives!

input :: Formlet String
input = Formlet (Comp (
(\name -> Comp ((pure (field name))
<*
inputField name)

)
<$> nextName

))

Key: NameGen Html Eval

Running it...

* Run the person Formlet...

*Formlet> let (output,fun) = runFormlet person

 Print the HTML

*Formlet> putStrLn output

Name: <input type="text" name="input 1">

Age: <input type="text" name="input 2">

Gender: <input type="text" name="input 3">

e Evaluate on corresponding inputs

*Formlet> runEval fun [("input 1","John Hughes"),
("input 2","54"), ("input 3", "Male")]

Person "John Hughes" 54 Male

Conclusions

Applicative functors are...
— Less powerful than monads—Iless expressive
— More general than monads—more instances

More composable than monads
— Prod and Compose
— No need for "Applicative transformers”

Enjoy a simple interface—a "sweet spot” in
common interfaces

Have lots of applications

