
Monads and all that…
III – Applicative Functors

John Hughes

Chalmers University/Quviq AB

Recall our expression parser…

expr = do a <- term

 exactly '+'

 b <- term

 return (a+b)

 `mplus`

 term

term = do a <- factor

 exactly '*'

 b <- factor

 return (a*b)

 `mplus`

 factor

factor = number

 `mplus`

 do exactly '('

 a <- expr

 exactly ')‘

 return a

exactly t =

 satisfy (==t)

Wouldn’t it be nice to
use liftM3 here?

liftM3 (\a _ b -> a*b) ?

liftM3x_x (*) ?

An Applicative Interface

• Let’s build liftM3 from simpler parts!

• Then…

liftM f x = return f <*> x

liftM2 f x y = return f <*> x <*> y

liftM3 f x y z = return f <*> x <*> y <*> z

…

(<*>) :: Monad m => m (a -> b) -> m a -> m b

f <*> x = liftM2 ($) f x

Ignoring Values

• Variations on (<*>) that ignore one
argument

• All the effects happen left to right, but some
values are discarded

(<*) :: Monad m => m a -> m b -> m a

a <* b = return const <*> a <*> b

(*>) :: Monad m => m a -> m b -> m b

a *> b = return (const id) <*> a <*> b

Revisiting our expression parser…

expr =

 return (+) <*> term <* exactly '+‘ <*> term

 `mplus` term

term =

 return (*) <*> factor <* exactly '*‘ <*> factor

 `mplus` factor

factor =

 number

 `mplus` exactly '(‘ *> expr <* exactly ')‘

exactly t = satisfy (==t)

More concise More ”applicative” in feel

Another Problem

• Backtracking is inefficient!

instance MonadPlus m =>

 MonadPlus (StateT s m) where

 m `mplus` m' =

 StateT (\s ->

 runStateT m s `mplus` runStateT m' s)

Even if the first parser m succeeds…
…we must keep the entire input and the
other parser in memory, in case we should
ever need to backtrack

A Solution?

• Compute static information about each parser,
and use to optimise

– Possible starter symbols

– Can it match the empty string?

• In m `mplus` m’, if m’

1. Cannot match the empty string

2. Cannot match the next symbol

– Then it can safely be discarded

Attaching Static Information

• Let parsers be a pair, of
– Static information

– A dynamic parsing function (as before)

• But what about (>>=)?
– m >>= f matches ””

 m matches ”” and f ? matches ””

– starters(m >>= f) = starters m ++ starters (f ?)

 if m matches ””

We can’t know ? until
we see the (dynamic)

input!

Hmm…

• (>>=) is an obstacle to computing static into

• But (<*>) makes (>>=) less necessary… can we
do without (>>=) sometimes?

• Computing static info for f <*> m is
unproblematic

expr =

 return (+) <*> term <* exactly '+‘ <*> term

 `mplus` term

Applicative Functors

• An alternative interface…

• Every Monad is Applicative

class Functor f => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a->b) -> f a -> f b

newtype WrappedMonad m a = Wrap {unWrap :: m a}

instance Monad m => Applicative (WrappedMonad m)

where

 pure a = Wrap (return a)

 Wrap f <*> Wrap x = Wrap (liftM2 ($) f x)

Not every Applicative is a Monad!

• Can a parser match the empty string?

– A ”parser” that can’t parse—just tell us if it matches

””!

• A generally useful kind of non-monadic
Applicative: collect information using a monoid

newtype Empty a = Empty Bool

instance Applicative Empty where

 pure _ = Empty True

 Empty f <*> Empty x = Empty (f && x)

But every Applicative is a Functor

• We can always define fmap like this…

• (We can’t write a general instance, because
the type-checker would use it too often, but
for any specific f the definition works)

fmap :: (a->b) -> f a -> f b

fmap f a = pure f <*> a

instance Applicative f => Functor f

where

 fmap f a = pure f <*> a

Applicative vs Monad

• Consider a conditional function

• Monadic:

• Applicative:

cond :: m Bool -> m a -> m a -> m a

cond m f g = do bool <- m

 if bool then f else g

Effects depend on
value of m

cond m f g =

 pure (\b t e->if b then t else e)

 <*> m <*> f <*> g

All effects happen
anyway

OK for parsing CFGs!

Applicatives are more composable!

• We can pair any two Applicatives:

data Prod f g a = Prod (f a) (g a)

instance (Applicative f, Applicative g) =>

 Applicative (Prod f g) where

 pure x = Prod (pure x) (pure x)

 Prod f g <*> ~(Prod x y) =

 Prod (f <*> x) (g <*> y)

Applicatives are more composable!

• We can compose Applicatives:

• Even monads which don’t compose can be
wrapped and composed as Applicatives!

newtype Compose f g a = Comp (f (g a))

instance (Applicative f, Applicative g) =>

 Applicative (Compose f g) where

 pure x = Comp (pure (pure x))

 Comp f <*> Comp x = Comp (pure (<*>) <*> f <*> x)

Making Choices

• We need an analogue of MonadPlus

• Of course, wrapping a MonadPlus gives an
Alternative

class Applicative f => Alternative f where

 empty :: f a

 (<|>) :: f a -> f a -> f a

instance MonadPlus m =>

 Alternative (WrappedMonad m) where

 empty = Wrap mzero

 Wrap a <|> Wrap b = Wrap (a `mplus` b)

Making Empty an Alternative

• Can we define an Alternative instance for
Empty?

– When does a choice between parsers match ””?

instance Alternative Empty where

 empty = Empty False

 Empty f <|> Empty g = Empty (f || g)

Matches no strings, so definitely
not the empty string

Compare <*>, which used &&

Some and Many revisited

• Now we can define some and many for any
Alternative functor!

• Even generic optional values!

some f = pure (:) <*> f <*> many f

many f = some f <|> pure []

optional f = pure Just <*> f

 <|> pure Nothing

some f = (:) <$> f <*> many f

many f = some f <|> pure []

optional f = Just <$> f

 <|> pure Nothing

some f = s where

 s = (:) <$> f <*> (s <|> pure[])

Where are we now?

• Wrapping our Parser monad gives us an
Alternative functor

– With pure, <*>, empty, <|>, <*, *>, some, many…

– Almost everything we need to write parsers!

• We just need to add exactly

newtype Monadic a =

 Monadic (WrappedMonad (StateT String Maybe) a)

 deriving (Functor, Applicative, Alternative)

The Parser Class

• Because we want multiple representations of
parsers, define a class

• Monadic implementation:

class Alternative p => Parser p where

 exactly :: Char -> p Char

instance Parser Monadic where

 exactly t = Monadic (WrapMonad (do

 ts <- get

 case ts of

 [] -> mzero

 t':ts' -> do

 guard (t==t')

 put ts'

 return t))

Our Example, Applicatively

number, expr, term, factor ::

 Parser p => p Integer

number = read <$> some (anyof ['0'..'9'])

expr = (+) <$> term <* exactly '+' <*> term

 <|> term

term = (*) <$> factor <* exactly '*' <*> factor

 <|> factor

factor = number

 <|> exactly '(' *> expr <* exactly ')'

*Parser> runMonadic expr "1+2*3"

Just (7,"")

Empty Parser

• Can exactly t match the empty string?

Examples

We can execute and analyse the same code

instance Parser Empty where

 exactly _ = Empty False

*Parser> runEmpty expr

False

*Parser> runEmpty (many expr)

True

What tokens can a parse start with?

newtype Starts a = Starts [Char]

instance Functor Starts where

 fmap f x = pure f <*> x

instance Applicative Starts where

 pure x = Starts []

 Starts ts <*> Starts ts’ = ???

instance Alternative Starts where

 empty = Starts []

 Starts ts <|> Starts ts' = Starts (nub (ts++ts'))

instance Parser Starts where

 exactly t = Starts [t]

May start with one
of ts’ if the first

parser matches ””

newtype Starts a = Starts [Char]

instance Functor Starts where

 fmap f x = pure f <*> x

instance Applicative Starts where

 pure x = Starts []

instance Alternative Starts where

 empty = Starts []

 Starts ts <|> Starts ts' = Starts (nub (ts++ts'))

instance Parser Starts where

 exactly t = Starts [t]

Of course this doesn’t work…

• As soon as we use something needing <*>,
we crash

*Parser> runStarts (exactly 'x' <|> exactly 'y')

"xy”

*Parser> runStarts (some (exactly 'x'))

"*** Exception: No instance nor default method for

class operation Control.Applicative.<*>

Let’s compute Empty and Starts
together

• Just form their product

• We’ll need to make Prod a Parser

• Of course, it still doesn’t work!

newtype Static a = Static (Prod Starts Empty a)

 deriving (Functor,Applicative,Alternative,Parser)

instance (Parser f, Parser g) => Parser (Prod f g)

where

 exactly t = Prod (exactly t) (exactly t)

*Parser> runStatic (exactly 'x' <|> exactly 'y')

("xy",False)

*Parser> runStatic (some (exactly 'x'))

("*** Exception: No instance nor default method for

class operation Control.Applicative.<*>

Replace <*> just for Static!

• Derive everything except Applicative

newtype Static a = Static (Prod Starts Empty a)

 deriving (Functor,Alternative,Parser)

instance Applicative Static where

 pure x = Static (pure x)

 Static (Prod (Starts ts) (Empty e)) <*>

 ~(Static (Prod (Starts ts') (Empty e')))

 = Static (Prod (Starts (ts++if e then ts' else []))

 (Empty e<*>Empty e'))

Now it works!

• Examples:

*Parser> runStatic (some (exactly ' ') *> exactly 'x')

(" ",False)

*Parser> runStatic (many (exactly ' ') *> exactly 'x')

(" x",False)

*Parser> runStatic expr

("0123456789(",False)

(Truth in Advertising)

• It should work, but it doesn’t

• I have to explicitly declare the Alternative
instance too, and work around a bug in ghc’s
strictness analyser (?)

Optimizing <|>

• Choice is inefficient in backtracking parsers

• Let’s pair the Static and Monadic parsers

• Define an Alternative instance that optimizes
<|> based on the starter tokens and the next
character

• Could not be done with monads

newtype OptParser a = Opt (Prod Static Monadic a)

 deriving (Functor, Applicative, Parser)

What else can we do?

• Let’s try Applicative randomness!

• We need a class for choose

newtype Random a = Random (WrappedMonad RandomM a)

 deriving (Functor, Applicative, Choice)

class Applicative f => Choice f where

 choose :: Int -> Int -> f Int

instance Choice (WrappedMonad RandomM) where

 choose m n | m <= n =

 WrapMonad (do x <- generate

 return (m + (x `mod` (n-m+1))))

Random Alternatives

• We make the choice in the monad to avoid
generating both alternatives always

BUT

• No sensible definition of empty

instance Alternative Random where

 Random (WrapMonad m) <|> Random (WrapMonad m') =

 Random (WrapMonad (do

 x <- generate

 if even x then m else m'))

Bounded lists

• Bounded lists are easy to define with <|>:

• But do we really want 33 so often?

blist 0 g = pure []

blist n g | n > 0 =

 shorter <|>

 (:) <$> g <*> shorter

 where shorter = blist (n-1) g

*Random> runRandom (blist 30 (choose 1 10 <|> pure 33))

[33,5,33,5,33,33,9,4,33,7,3,33,1,10]

Cardinality

• How many possibilities are we choosing from?

newtype Card a = Card {runCard :: Integer}

instance Applicative Card where

 pure _ = Card 1

 Card m <*> Card n = Card (m*n)

instance Alternative Card where

 empty = Card 0

 Card m <|> Card n = Card (m+n)

instance Choice Card where

 choose m n = Card (fromIntegral $ n-m+1)

Use Cardinality to Guide Choice

• Compose Card and Random into a product

• Define Alternative Uniform to use cardinalities
as weights!

newtype Uniform a =

 Uniform (Prod Card (WrappedMonad RandomM) a)

 deriving (Functor, Applicative, Choice)

instance (Choice f, Choice g) =>

 Choice (Prod f g) where

 choose m n = Prod (choose m n) (choose m n)

empty = Uniform (Prod empty undefined)

That’s Better!

• Here’s the old test

– Lots of 33s!

• Here’s the new one

*Random> runRandom (blist 30 (choose 1 10 <|> pure 33))

[33,5,33,5,33,33,9,4,33,7,3,33,1,10]

*Random> runUniform (blist 30 (choose 1 10 <|> pure 33))

[5,33,2,6,7,3,3,7,10,7,1,10,4,10,9,4,3,6,4,6,10,3,33,5,3,

33,9,1,4]

What else can we do?

• ZipLists!

– [f,g,h] <*> [x,y,z] [f x,g y,h z]

• Think of a sequence of steps

• Lists are already Applicative (all combinations),
so we need a new type

Applicative ZipLists

• It makes sense that pure repeats x infinitely…
it’s available at every step

instance Applicative ZipList where

 pure x = ZipList (repeat x)

 ZipList fs <*> ZipList xs =

 ZipList (zipWith ($) fs xs)

A ZipList Monad?

• Consider [a1,a2…an] >>= f

• The 3rd monad law fails

– (if f returns lists of different lengths)

– Would also be very inefficient

a1

a2
…

an

[b11,b12 … b1m]

[b21,b22 … b2m]
…

[bn1,bn2 … bnm]

f

Functional Reactive Programming

• Describes changing behaviours over time

– Behaviour a Time -> a

• Naturally applicative!

– Behaviour (a->b) -> Behaviour a -> Behaviour b

• Inefficient as a monad!

– Behaviour a -> (a -> Behaviour b) -> Behaviour b

Construct a Behaviour b from a n at each
Time, then sample it at one point!

Terrible for GC!

Html (nano-)Formlets

• Example:

• Generated by:

• Data returns to the application as

Name: <input type="text" name="name">

Age: <input type="text" name="age">

Gender: <input type="text" name="gender">

[(”name”,”John Hughes”),

 (”age”,”54”),

 (”gender”,”male”)]

Names must
be unique

Names
must

match

Names
must

match

Using Formlets

 data Person = Person String Integer Gender
 deriving Show

data Gender = Male | Female

 deriving (Read, Show)

person =

 Person

 <$ html "Name: "

 <*> input

 <* html "
\nAge: "

 <*> (read <$> input)

 <* html "
\nGender: "

 <*> (read <$> input)

Generate HTML

Accept and
process input

The features we need

• Generation of unique names

• Collection of generated HTML

• Evaluation of results given field values

in this order!

newtype Formlet a =

 Formlet (Compose NameGen (Compose Html Eval) a)

 deriving (Functor, Applicative)

NameGen (Html (Eval a))

Staged effects

Name Generation

• We use a state monad to carry a counter

• Generate a name by incrementing it

newtype NameGen a =

 NameGen (WrappedMonad (State Integer) a)

 deriving (Functor, Applicative)

nextName :: NameGen String

nextName = NameGen (WrapMonad (do

 n <- get

 put (n+1)

 return ("input_"++show n)))

Collecting Html

• Collect a string of HTML as the effect

• Basic operation generates some text

• Generating a named input field

newtype Html a = Html (String,a)

 deriving (Functor, Applicative)

text :: String -> Html ()

text s = Html (s,())

inputField name =

 text $ "<input type=\"text\"name=\""++name++"\">"

Evaluation of fields

• Pass in list of fields implicitly

• An operation to look up the value of a named
field

newtype Eval a = Eval ([(String,String)] -> a)

 deriving (Functor, Applicative)

field :: String -> Eval String

field name = Eval (fromJust . lookup name)

Formlets: Generating HTML

html :: String -> Formlet ()

html s = Formlet (Comp (pure (Comp (pure <$> text s))))

newtype Formlet a =

 Formlet (Compose NameGen (Compose Html Eval) a)

 deriving (Functor, Applicative)

Html ()

Html (Eval ())

Compose Html Eval ()

NameGen (Compose Html Eval ())

Compose NameGen (Compose Html Eval) ()

Formlets: Input Fields

• Combine effects in all three Applicatives!

• Key: NameGen Html Eval

input :: Formlet String

input = Formlet (Comp (

 (\name -> Comp ((pure (field name))

 <*

 inputField name)

)

 <$> nextName

))

Running it…

• Run the person Formlet…

• Print the HTML

• Evaluate on corresponding inputs

*Formlet> let (output,fun) = runFormlet person

*Formlet> putStrLn output

Name: <input type="text" name="input_1">

Age: <input type="text" name="input_2">

Gender: <input type="text" name="input_3">

*Formlet> runEval fun [("input_1","John Hughes"),

("input_2","54"), ("input_3","Male")]

Person "John Hughes" 54 Male

Conclusions

• Applicative functors are…

– Less powerful than monads—less expressive

– More general than monads—more instances

• More composable than monads

– Prod and Compose

– No need for ”Applicative transformers”

• Enjoy a simple interface—a ”sweet spot” in
common interfaces

• Have lots of applications

